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Abstract. A complex { B, | of submanifolds is called admissible in the sense of integral
geometry if there are such densities K, on BE’ that the integral transjormation

I:f(x)e/ f(x)ut
By
has a local inversion formula.
We prove that compact smooth surfaces of an admissible complex in P3 has
degree < 3 and obtain complete classification of admissible complexes of qua-
drics. Several general theorems and conjectures about admissible complex of k-dimen-
sional submanifolds are stated.

§ 1. INTRODUCTION

1. Basic definitions. n-parametric family of submanifolds BE of n-dimensional
manifold B is called admissible, if the value of any function f on B atevery
point x .can be recovered from integrals of f over submanifolds, passing through
an infinitesimal neighbourhood of x.

The general conception of integral geometry has been proposed by IL.M. Gel-
fand in the end of 50s [Gel].

Key-Words: Integral geometry, families of surfaces
1980 MSC: 32 A 25



572 A.B. GONCHAROV

Let us give rigorous definitions. A double fibration is a diagram of manifolds

i AR
(1) B\/ \I‘

such that 7 x @, * A > B x I' is an embedding. For x €B and § €T set

— “lg. _ -1
Bs—'rrlmr2 £; I, =m,om "x

A double fibration axiomatises notion of a family of submanifolds. To
define diagram (1) itissufficient toset the family of submanifolds Bt in B,
parametrised by I', or the family Fx in I' (where x € B). The last one is
called dual to the initial one.

Let us suppose also  that manifolds B p are nonsingular.

Choose some densities M, on manifolds BE and define the operator of in-
tegration

1: f(x)—>/ &) u,
By

In other words 7 is an.:)perator from Ca" (B) to C™”(I') whose Schwartz
kernel is ufx,.§) - 6(4) - dB, where 5(A) is a S-function of the submanifold
A, db is avolume element on B and u(x, £) is a functionon Bx I'.

If there is an inverse operator J : C* (I') > C~ (B) whose Schwartz kernel
has the form L - $(A4) - dy where L is a differential operator on B x I' and
dy is a volume element on I', we say that the integral operator I has a local
inversion formula. It is clear, that in this case dim B <dim T.

From now on we will assume that all manifolds are complex algebraic, while
we will integrate smooth functions. The reason is that the study of the integral
transform [ in the complex case is much more simpler than in the real one.
For example, if dim B_ is odd, then there are no local inversion formulas.

Let us suppose that dim B = dim I'. Then a double fibration in the category
of complex manifolds is called admissible if there are such (n, 0) — forms [
that for the integral transform

I:CrB)y->Cc= () I:f(X)-*/ fo) p, B,
By
there exists an inverse operator J with the Schwartz kernel of the form

L-L- 5(4) - dvy dy where L isa holomorphic differential operator on B xT.
In this case densities e ;Tg are called admissible densities (for the double
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fibration (1)).

2. Necessary condition for admissibility [Gon 2]. Let 73X be the conormal
bundle to a submanifold Y C X.
Consider the following simplectisation of diagram (1):

T% (BxT) G 7%B xIM)
P P
2 "B & N e

where p, and p_. are the restrictions to T .Z (B x I') of the projections from
T*B x ') = T*B x T*I" on factors.

In the case dim B = dim I"' all manifolds in diagram (2) are of equal dimensions.
We denote by d(B) (respectively d(I')) the degree of the map pB( Pr ).

If dim B = dim I', then traditionally the family of submanifolds Bt is called
a complex.

Example. Let T be a complex of lines in @P3. Then classics defined its
degree as follows. Consider the embedding of the Grassmanian of lines in P as
a Plukker quadric @, in CP5. Then I' = Q, NH, where H is a hypersurface
in @P°. By definition, degree of I' is equal to degree of H.

It can be proved that d(B) coincides with this degree. So we

will say that d(8) 1s the degree and d(I") is the codegree of the double fibration
(.
THEOREM 1.1. [Gon 1-2]. If dim B = dim I' and the double fibration (1) is
admissible, then d(I') = 1. L]
CONJECTURE A. Every complex of k-dimensional planes in @P" of codegree
1 is admissible.

This conjecture is verified for linear complexes of k-dimensional planes [M]
& [Gonl] and for line complexes (it follows from results of .M. Gelfand and
M.IL Graev [G Gr 1].

In [Gon 3] we will prove it for complexes of (n — 2)-planes in @ and 2-
planes in @F° .

V. Guillemin and S. Sternberg proved (see [GS1-2]) that if in the C™-cathegory
the map

P :T% BxI)\0O~>T*\0

is injective immersion, m - A — B is proper and I' is the operator of integration
over I‘x (equipped with a measure), then /* o I is an elliptic pseud odifferential
operator.

But in the complex case there are no such examples if codim BE > 1. (see
[Gon 2)).
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3. Admissible families of curves. The full description of admissible double
fibrations in the case dim Bs = 1 was obtained in the end of 70-s ({GGiSh],
[GGr2], [BGI1-2], [B], [Gi 1-2]). It was done in two steps. First of all, .M. Gel-
fand, S.G. Gindikin, Z. Ya. Shapiro and M.I. Graev had founded necessary and
sufficient conditions for the admissibility of a double fibration in the case
dim B =dimTI, dim BE = 1. ({GGiSh], [GGr2)).

In parucularly, they proved that BE is a rational curve (for admissible family
of curves).

The next step has been performed by J.N. Bernstein and S.G. Gindikin
([BG 1-2]. [B]. [{Gi1-2]).

Let us state a part of their results; the description of admissible families of curves
in generic position.

THEOREM 1.2. ({BG 1-2)). Let T’ be a complete family of compact nonsingular
rational curves on B (i.e. dim I'' = H° (Bs, ‘5., B)). Then the family of curves,
which are tangent to r fixed hypersurfaces and intersect r, fixed subvarieties
of codimension 2 in B, where ry, +r, <dim ' — dim B is admissible and all
admissible families of curves in generic position can be obtained by this way. ]

For example, any admissible complex of lines in €P> consists of lines, which are
either tangent to an algebraic surface or interset an algebraic curve.

For admissible complexes of lines theorem 1.2 was proved by IL.M. Gelfand
and M.L. Graev {GGr 1]).

Other admissible complexes in I can be obtained from these by a limit
procedure. It is remarkable, that there is an explicit construction for all admissible
complexes in I'". We will give it in s. 2 of §3. (See theorem 3.9).

DEFINITION 1.3. The variety of critical values of the projection m, : A - B
is called the critical variety for a family {BE} on B. »

For example, the critical variety for admissible complexes in generic position
in T is the union of r hvpersurfaces and r subvarieties of codimension 2,
mentioned in the tformulation of theorem 1.2.

Theorem 1.2 tells us, that in the case of curves admissible complexes are
characterised by the property, that they can be defined by tangency — intersec-
tion conditions with the critical variety.

The situation in the case dim BE = 2 is much more complicated. For example,
a complex of k-planes, which are tangent to (k + 1) (n — k) — n hypersurfaces
in CP" has codegree

Ck —((k+1)(n—k)—n)

which is greater than 1 if ks 1, n — 2. where ((k + 1) (n — k) is the dimension
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of the Grassmanian of k-planes).

4. Main results. As we see in the previous section, there is the exhaustive
description of admissible families of curves.

Unlike this, almost nothing was known about manydimensional case. For
example, the only known admissible families of surfaces in 3-dimensions was’

a)complex of all planes in R3 of C3.

b) complex of spheres, tangent to a plane.

The first is the classical Radon transformation, and the second is the horo-
spheric transformation in the Lobatchevsky space, because horospheres in upper-
halfplane realisation are exactly spheres, which are tangent to absolute (i.e.
the plane z = 0) (see [GGV]).

In §§3, 4 of this article we classify all admissible complexes of surfaces
of the second order (i.e. quadrics) in CP3 . First of all we give in§3 some exam-
ples of such complexes in CP? and prove that they are admissible. Then we prove
in §4 that there are no others complexes of quadrics in CP3 of codegreee 1. So
we proved that any complex of quadrics in CP? of codegree | is admissible.
This result confirms our general conjecture.

CONJECTURE B. If T is an admissible family of submanifolds Bt in B and
dim B <dim T, then every complex in T of codegree 1 is admissible. -

The definition of admissibility in the case dim B < dim I' is based on the
notion of universal local inversion formula, discovered for k-planes in CP* by
I.M. Gelfand, M.I. Graev and Z. Ya. Shapiro in their beautiful paper [GGShl]
more than 20 years ago. We will give it in §2.

What can we say about admissible families of surfaces in CP3? There is the
following rationality theorem.

THEOREM 1.4. [Gon2] If Bt is a complex of submanifolds in B of codegree
1, then B ¢ is rational and there is the canonical rational structure on PT ;EB' L]

Recall, that by Chow theorem any compact analytic subvariety in @P" is
algebraic. So if {Be} is an admissible complex of compact smooth surfaces in
P’ , then BE is a surface of degree < 3, because it is known, that there are no
rational smooth surfaces in P?> of degree greater than 3 (see [GH] ch. IV).

We hope to classify admissible complexes of cubic surfaces in €.P3 in the
subsequent paper.

In most cases admissible complex of quadrics in @P? can be reduced to
an admissible complex of curves on a 3-dimensional manifold in a following
manner: there is a diagram
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“) A, A,
N

where B = QP? B« A, = L, isan admissible complex of lines in ar?,

L < A, » I' isan admissible complex of curves on L and @ «A->T is
the admissible complex of quadrics. So the integral transformation, connected
with it is the composition

@) s ey 3 )

Thus the admissibility of this complex of quadrics follows immediately from
admissibility of double fibrations in the lower part of the diagram (4).

In [Gon3] we will prove that reduction to curves is not a lucky chance, but
a rule for admissible complex in the case dim BE > 1. See also §5.

§2. UNIVERSAL LOCAL INVERSION FORMULA AND ADMISSIBILITY
IN THE CASE dim B <dim I’

 Suppose that dim B <dim I". Then dim BE < dim I‘x. Let
x oI~ Qk(l"x) be a differential operator of order k = dim BE such that

e Uf)=0 forany f€ G (B).
If v isa K-dimensjonal cycle in Fx, then

fxx(lf) =c(y)- fix)
s

where c¢(y) does not depend on f. Indeed, the integral depends only on
the homology class of %, so it defines a generalised function on B which is
concentrated in the point x (because dim I'_ > dim 7). The homogeneity
considerations shows that it is proportional to &(x).

If for any point x there are a cycle v in I'  and an operator x such
that c(y) # 0, then we will say that the integral transform [ admits an uni-
versal local inversion formula. Various inversion formulas can be obtained choos-
ing appropriate cycles ¥, homological to v.

As usually, in the complex case we suppose that the integral has a form

f x, N7, (If)
v
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DEFINITION 1.2. We suppose that dim B < dim I'. Then the double fibration
(1) is said to be admissible, if there are such measures of type xt)‘(; on Be
that the corresponding integral transform I admits an universal local inversion
formula. ]

Let & be a generic hyperplane in TE I'. We denote by C, the homology
class of codimension 2k in I'| represented by the cycle, consisting of all such
points § € l"x, that TxB; Ch.

PROPOSITION 2.2. In the complex case () is equal to e, 7 where € ,)
is the intersection form in H,y, (l"x ). L

§3. ADMISSIBLE COMPLEXES OF QUADRICS IN THE THREE-DIMEN-
SIONAL SPACE: EXAMPLES

1. We start with examples

Example 3.1. Complex of quadrics, containing a fixed line £ and tangent
to 3 subvarieties M, M, M, in @P3,

Example 3.2. a). Complex, consisting of quadrics, which are tangent to a
fixed quadric Q along a plane conic and some more a subvariety in aP3.

Example 3.2.b). Complex of quadrics, passing through a fixed plane conic
C and tangent to a subvariety in @GP,

Complex from example 3.2.b) is projectively equivalent to complex of spheres.

If we set the quadric Q to the absolute, then quadrics in RP? from example
3.2.a) are spheres in the Kely-Kleine realisation of non-equilidian geometry:
(the distance between any two points 4, 8 in RP? is given by the formula

1

(4, B)= — log (4, B, P, P,)
2i

where P1 and P, are points of intersection of the line AB with the absolute
and (-, -, -, ) is the cross ratio.

Consider the sphere §% = {x] +x7 +x3 +x3 =1}

Then the stereographic projection from the point (1, 0, 0, 0)  transforms
spheres in the hyperplane x, = — 1 to hyperplane sections of § 3 , Which are
also spheres. Further, the projection from the origin onto the hyperplane
x, = — 1, which is 2 : 1 map, transform spheres on s3 to spheres in Kely-
Klein realisation of non-euclidean geometry with the quadric xl2 +... +x§ =1
as the absolute. So the composition of this two transformations provides the
2 ;1 covering, which transfers the euclidian spheres to the non-euclidian.

Example 3.3. Let R be a ruled (but not a developable! ) surface in @P3.
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Consider complex, consisting of quadrics, which are tangent to R along rectili-
near generatrices of R and some more a given subvariety M.

Note, that the tangent plane in CP? toa developable surface does not change
along arectilinear generatrix. so quadric cannot be tangent to developable surface
along a line.

Tangent planes to ruled surface R along a rectilinear generatrix £ gives
a 1:1 map from £ = @P' to a manifold of all planes, containing £ (which
is also @P'). So there is exactly 3-parametric family of quadric. which are
tangent to R along &.

Example 3.4, Complex, consisting of quadrics, which are tangent to a given
plane H at a fixed point x and some more 3 subvarieties in P2 .

If m is the infinite plane in @P?, then

2 2
Xy =a X7+ 2allex2 tayxy +ax, +ax, +a,
is the equation of quadrics, which are tangentto 7 atthe point x = (0:0:0:1).

2. THEOREM 3.5. All complexes from examples 3.1-3.3 are admissible.

Proof. First of all let us verify that any of these complexes is a composition
of admissible complexes of curves. i.e. it has the form (4).

Denote by L (respectively LQ, LC and Lp) the manifold of all lines, intersec-
ting the line & (respectively tangent to the quadric Q, along a plane conic passing
through the plane conic C or tangent to ruled surface R). Then L, LQ, L. and
LR are admissible complexes of lines (see theorem 1.2).

LEMMA 3.6. If we set L = L, (respectively LQ, LC of Ly ), we can represent
a complex from example 3.1 (respectively 3.2 or 3.5) in the form (4),

Proof. If B, is a guadric containing the line £ (tangent to R along the line
or to Q along a conic) then all lines on Bt’ intersecting this line, form a rational
curve on L, (LR or LQ). We denote it by BE‘ If BE is a quadric, containing the
plane conic C, then all lines on it form a pair of rational curves on LC (we also
denote it by BE)' '

Let us prove that in any case we obtain the complete family of rational curves
BE on L. Indeed, every variation Et(,) of the curve Et provides the variation
Bt(l) of the quadric Bt‘ Then Bf(r) is a quadric, because the quadric can not
be deformed. It follows from the definition of L that BE(I) contain the line
£ (respectively intersect the conic C or tangent R along the line).

Now let us prove that complex of rational curves, corresponding to the com-
plex of quadrics from example 3.1 is admissible. (The proof of the same state-
ment for complexes from examples 3.2 and 3.3 is in complete analogy with this
one). Let Mi (i =1, 2, 3) be the surface in L, consisting of lines, tangent
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to MI.. Then it is not hard to see that a complex from example 3.1 corresponds
to the complex of curves Et’ which are tangent to surfaces /17!1, 1l712, ]l713. There-
fore it is admissible by theorem 1.2. =

Remark 3.7. The codegree of the double fibration B <« 4 = T in (4) is
the product of codegrees of double fibrations in the lower part of (4).
So if the codegree of the double fibration B « A4 — I' is 1, then the same is
right for lower double fibrations in (4). Therefore the double fibration
L « A2 - I' is admissible (because BE are curves) and if dim B = 3,
then the double tibration B <A, 2L 15250 aamissible (by the same reason).

LEMMA 3.8. If double fibrations in the lower part of diagram (4) are admissible,
then their composition — the double fibration B <~ A — T' — isalso admissible.

Proof. We can choose some admissible densities X, on curves 1}‘ Let 1
be a point of L, 2(n) -corresponding line in ar? and ¢/ -admissible density
on the line $(n) (Recall, that the admissibility of these densmes means, that
the corresponding integral transformation has a local invertion formula — see
s.]1 of §1).

We define the integral transformation [ : Cj (@P3) » C= (") as follows:

1,-f(x)t—>/ (/ f(x)wn)x
By Jem)

C((IP3) C(L) ¥e=(ry; 1= I 01

So, we obtain:

¥
where
1, ~'f(x)'—>so(n):=/ fx)y v,
n
2(n)
L, < el / w(n) X,
EE
Denote by J, and J inverse operators for 7 and ] which are

XE
local inverse formula for these mtegral transformations. Then J =7 v © Jx ‘
is the local inverse operator for the integral transformation J k
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Recall, that in the case of example 3.2 a quadric Bz’ passing through the
conic C, transfers to the union of two rational curves: Egl) and Bgz), which
are parametrised .two fain%lies of lines on BE' Thus we must choose such admis-
sible densities xé’) on Bg’) that

f (f fx) wn‘) X = f {/ fx) w,,) X2
BD e 53 Ve

It remains to remark that, as we see above, complexes of type 3.2 b) reduce
to complexes of type 3.2 a). Theorem 3.5 is proved. L

Note, that this reduction to curves on L, permits us to describe all
(not only in generic position admissible complexes), consisting of quadrics,
passing through the line £, because they transforms to admissible, complexes
of curves in L!2 (and vice versa), which is completely classified by J.N. Bern-
stein-S.G. Gindikin. Let us state their result in general form.

Namely, consider the tower of monoidal transformations

acplp1el gy
where of : B' > B'-1 s the monoidal transformations with the center at an
irreducible subvariety Y, ;C_, B"!. Let Z,...,Z, are hypersurfacesin
B? and 521, C.. ,Qm — some integer numbers. Denote by I' (B, A, ZT R Zm ;
R, £ ) the family of curves from I'’', which can be lifted on B?, in-
tersect preimage of YO, ., Yq_l and tangent to Zl, e ,Zm of order
£ e £~ rtespectively.

Denote by d;_, the codimensionof Y, ;| in B.
It is easy to see that the constructed above family of curves depends on

m
dim I — }: Qi—i @ -1
=0

i=1

parameters. We will suppose that this number is greater than dim B — 1.

THEOREM 3.9. [BG1-2). Let T'' be a complete family of compact nonsingular

rational curves on B. Then the family T(B, A, Zl, ., Zm N Ql, e, Qm)
is admissible and all admissible families in T’ can be obtained by this construc-
tion. n

For example, families in generic position can be described in this language
as families of type T'(B; 4; Z,,...,Z, /%,...,% ), where A:B! - B isthe

m
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monoidal transformation with the center in a subvariety Y C B of codimension
2 with r, irreducible components.

If we apply this theorem to the family of curves B on L, and consider
corresponding complexes of quadrics in ar?®  we obtamed the complete list
of admissible complexes of quadrics, which contain the given line £.

Exercise 3.10. Try to imagine, how itlooks in P’ complex of quadrics. cor-
responding to the complex of curves 13E on L, defined by the following tower
of monoidal transformations:

BB SR Sp=L,

where o' is the blow up with the center at a curve Y1 CL and o? (03) is

the blow up with the center at a curve Y, C (o) ! (Y,), (respectively
Y, Ce®) ! (v,

These complexes may be viewed as limits of complexes from example 3.1.
We will call such complexes as complexes of type I; complexes from examples
3.2 a), b) where quadric @ and conic C may be singular, we will call as com-
plexes of type II; complexes from example 3.3 as complexes of type IlI; and
complexes from example 3.4 and their limits as complexes of type IV.

THEOREM 3.11. Every codegree 1 complex of quadrics in aP? s complex
of type I, II, Ill or IV,

We will prove this theorem in §4.

Complexes of type IV cannot be represented in form (4). This fact and the
admissibility of complexes of type IV will be proved in [Gon3}. Explicit inver-
sion formulas for complexes of type I, II, Il1 can be found in [GonS5].

3. Contact transformation

In this section we define the action of a contact transformation on subvariety.

This definition goes back to Sophus Lie-see [Lie 1], [Lie 2]. We prove that
every admissible complex of quadrics of type I - 1l is contactly equivclent to an
admissible complex of curves by a canonical way. I hope also that results of this
section clarify the geometry of admissible families of quadrics in €P3 .

We will not differ contact transformations from homogeneous symplectic
ones.

It is very important to keep in mind the following well-known lemma.

LEMMA 3.12. Every closed, irreducible, algebraic homogeneous Lagrangian
subvariety in T*X has the form T; X, where Y isasubmanifold in X. L

Suppose that the homogeneous symplectic transformation ¢ : T *Bl - T*B,
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be a birational isomorphism. Then according to this lemma xp(T; Bl) can
be represented in the form Tg BZ. We will say that the family of subvarieties
{Bt} in B, is obtained from the family {BE} in’ B by the action of the homo-
geneous symplectic (or, after projectivisation, contact) transformation ¢. In
this case we will write ée = w(BE). 5
Example 3.13. (Projective duality). Let B, = P", B, = P" be the manifold
of hyperplanes in P" and C CP" x P? is the incidence manifold. Then we have
following diagrams
C TE (P" x P7)
v N P N
P pr T*p" T*p"
Set ¢ = (— pz) ° Py Loas Be is a k-dimensional plane in P", then np(BE) is
the projectively dual (# — k — 1)-dimensional plane in P".
This construction can be generalised as follows. Let C be submanifold in
B, sz and dimB1 = dim B,.
Consider a double fibration and its symplectisation

C . T%(B, xB,)
%) v\ v N\

B, B, T*B, T*B,
Then
(6) $ci=(=py)op; ' : T*B > T*B,

is a (multivalued) rational homogeneous Lagrangian transformation. The converse
is also valid:

PROPOSITION 3.14. Let ¢:T*B = T*B, be a homogeneous Lagrangian
transformation. Then there is a submanifold C C B, x B, such that ¢ has
the form (6).

Proof. Consider the graph {x, — ¢(x)} of the map — ¢. Itis a homogeneous
Lagrangian subvariety in T”‘Bl X T*Bz. So by lemma 3.12 it is the conormal
bundle to a submanifold C C Bl xB,. =

The following lemma permits us to find geometrically the image of a hyper-
surface under the action of a contact transformation

LEMMA 3.15.°Let M be a hypersurface in B, and B,(x) =!y €B, | (x, y)EC}
Thenp, (M) is the envelope of the family {B,(x)} where x € M. L]

Example 3:16. The contact transformation, which corresponds to the complex
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of spheres in R 3, tangent to the plane z = 0, transfers the family of spheres
in R? to the family of paraboloides

(7N z=AM(x —a)? +(y - b)? +0)

(To prove this, apply lemma 3.15). L]

This family of paraboloids can be defined as the family of all quadrics,
passing through two (imagine) intersecting lines at infinity. (Note, that this is
1 : 2 mapping). So it is the admissible family of quadrics of type II with dege-
nerate conic C.

Example 3.17. Let

(8) VRN

be the double fibration, corresponding to an admissible complex L of lines
in @P3. Consider its symplectisation

T* QP x L
o %
T*QP T*L
and corresponding homogeneous symplectic (rational) transformation
¢, i=(—p,)op;}

If (8) is a complex of lines, which:

I) intersect the line £

1) or are tangent to a quadric Q

IID) are tangent to the ruled surface R

then ¢, transfersa quadnc BE’ which respectively:

1) passes through the line £

11) passes through the plane conic C

-or 1s iangent to quadric ) along a plane conic

1) is tangent to the ruled surface R along a line

to a rational curve BE on L.

The constructed contact transformation inthe case Ilbis the famous line-spheric
correspondence of Sophus Lie-see [Lie 1]. [Lie 2]. Let us describe it in a more
invariant manner.

Let Q, be a 3-dimensional quadric. Then the family of all lines on Q, can
be parametrised by @P>.

The dual family {I' } (to the family of lines on Q,) is the linear complex
of lines in @P>. It can be described as follows. Let us represent CP? asa
projectivisation of the four-dimensional linear space V equipped with a symplec-
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tic structure: @P3 = P(V). Then there are 3-parametric family of Lagrangian
planes in V, which can be parametrised by the quadric Q,. If we projectivise
these planes, we obtain a linear complex of lines in P(V).

So we obtained the double fibration

A

9 N
© 0, P )

It is clear from proposition 3.9, that it has the degree 2 and the codegree 1.

The group SO(5) acts naturally on the left side of (9) and the group
SP(4)/{— 1} on the right side. So SO(5) = Sp(4)/ —{1} is the symmetry group
of the double fibration (9).

The projection of Q. — CP* with the center at x € 0, transforms com-
plex of lines on @, to complex of lines in P3| intersecting the plane conic
C, which is the image of the cone of lines on Q3, passing through x.

Let Yo, * T*Q3 - T*P3(V) be the homogeneous symplectic transformation,
connected with the double fibration (9). Let S be a sphere in Q3 (i.e. hyper-
plane section of Q). Denote by £ (S) and £,(S) curvesin P3(V), which
parametrised two families of lines in S.

LEMMA 3.17. (Due to Sophus Lie [Lie 1] [Lie 2]) 2,(S) and £,(S) are lines
in P*(V) such that corresponding planes in 'V are orthogonal with respect
to symplectic structure on V. "

This lemma explained the name “line-spheric” for the transformation Yo,

3

The linear complex of lines in P3(V) permits us to define an involutive
transformation of subvarieties in P?(F). Namely, consider the diagram

b TH@, <PV,
N
T*Q, T*P3(V)
Recall, that deg p; = 2;deg p, = 1. Let us identify generic parts of
T: (Q3 X P3(V)) and T*P3(V) by the map 0y - Then the involution on the

total space T/”; (Q3 X P3(V)) of the 2:1 covering Py induces the transforma-
tion

Y T*P3 (V) > T*PP(V), Y*=id

For example, if x € P>(V) and h, is the plane in P3(V) consisting of all
lines of the linear complex, passing through x, then d/(T:P3(V))= T;" P3(V)).
X
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Note that the 3-dimensional subspace in V¥, which corresponds to hx, is ortho-
gonal, with respect to symplectic structure in V, to the line, corresponding
to x.

The next example:

VT P =TF 5, PPN

If X is a generic surface in P3(V), then we can define the surface Y(x):
3 _ 3
WTE PV =T 5, P (V)

It follows from lemma 3.15, that y(X) is the envelope of the (2-parametric)
family of planes /, C P3(V), where x €Eh_.

Finally, let me recall that horocycles for SL2(¢) are the subsets & - N g,
where g,, &, €SL,(Q).

If we identified SL2(([) with a quadric ad — bc = 1, then it can be viewed
as an open part of Q,, and the complex of horocycles transfers to the complex
of lines on Q3. .

The explicit local inversion formula for complex of horocycles for SL2 @
was obtained by .M. Gelfand and M.A. Naimark in 1947. It plays the crucial
role in the problem of finding the explicit Plancherel formula for SL2 @) (see
[GGVD).

§4. PROOF OF THEOREM 3.11

1. Let T' be a family of submanifolds BE in B. Then a vector v € TEF
defines the section 'yv()\) of the normal bundle to T ;EB in T*B. Denote
by « the canonical 1-form on T*B. Then formula

A—a(y,(A)
defines the map
V! T;EB ->TT
Denote by T;’YX the fiber of the bundle T;‘,X at the point y.

LEMMA 4.1. Let us suppose that m, o A > I is a submersion. Then we have
the isomorphism

(10) pp T3 BxD)>TY, B a=(x9)

Proof. If a = (x, £), then T,AC T Be TEF' The mapping daﬂz cT, A~ TEF
is epimorphism, so Ker dm, =T, B£ @ 0. =

So there is the following diagram
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T¥B x T’
a1 o5, ABxD
LTy B T*r
ter 11 u:UuE
H
LEMMA 4.2. Diagram (11} is commutative.

Proof. 1t sufficient to check, that if A € T g B, then covector (A, VE()\))
is vanishes on any vector (v v, ) e T A ie. (Vt ), v2> = — (], Ux>' But this
is the definition of Ve because a pdq =

COROLLARY 4.3. Suppose that dim B = dim I Then the codegree of the
double fibration (1) is equal to the degree of the projectivisation of the map

. ¥
Ve"TBgB\O_)T:F\O =

Let us denote by S the subvariety Pr (T;;e BxI')ycr

LEMMA 4.4.[GS1-2] a) s coisotropic.

b) Suppose that the map p. s inclusion in the generic point, so we can
identify generic parts of Pr (T* B xT)) and . Then pp coincides with the
null-foliation on the cozwtroplc manifold z. =

2. Let T be the family of all quadrics Qé in @P3. Then
o, * 3 r
(13) Vg'TQ€@ -»T;"I"

Projectivising (13), we obtain the embedding of QE in CP® provided by
the invertible sheaf 0(2)/Q (ie PV’:‘ o) = 0(2)/Q€). So Pv;(QE) is the
submanifold of degree 8 in PT *

Let ' be a complex of quadrlcs in @P3. Then there is the following com-
mutative diagram

T
™ ¢ B Y i :T,T'>TT'
% S~ 7T £ ¢
V!_ ¢

Let us projectivise this diagram:

PT* r
(14) o5 It
\’PT *I

So Py, 1s a birational isomorphism of the quadric Q, =P xP! on P?,
provided by a linear subsystem L of the complete linear system O(2, 2) on
Q Let us classify such linear systems.

I Suppose that the fixed set of L contain a divisor & . There are 3 possi-
bilities:
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a) 9 is a line.

b) @ is a conic, or 2 intersecting lines.

c) @ is a pair of non-intersecting lines.

Let us denote by 95 a divisor on Qt which corresponds to £ after iden-
tification PZE and Q, by the map Pv'z (see (11)).

By lemma 4.4 there is the null-foliation p : £ — T*@P?. Then p(£ N T;l"')
is an isotropic subvariety in T*@P> because £ N Vi I'' is an isotropic subva-
riety in T*T.

Denote by 7 the projection of 7*@P° on @P?. Then

Cr:=m(ZNT*T)

is a subvariety of positive codimension in @P3 .

It follows from results of section 1, that Cr coincides with the critical variety
for the family T'.

Note that

(15) p(D)Cp(Z) and p(D ) CPTE O

Suppose that 2 " is a line. Then Cr contain either a line £, or a one-para-
metric family of lines, i.e. ruled surface R. In the first case I’ is a complex
in the family Iy of all quadrics, passing through the line £. In the second T’
is a complex in the family FR of all quadrics, which are tangent to R along
a line.

In the case b) Cr contain either a plane conic or a surface M such that
quadrics from the complex I' are tangent to M along a plane conic. In the
first case I' is a complex of quadrics, passing through the plane conic.

Note that quadrics, which are tangent to M along a given conic depends
on one parameter. So there is a two-parametric family of conics on M. There-
fore M is a quadric.

In the case ¢) L is a linear (sub)system of O(0, 2), so it defines the map
of degree zero, and this case does not occur.

II. Now let us consider the case, when the fixed set of the linear system L
is a zero-cycle,ie. L =|2H - % m; x, | where H isthe divisor class of a hyper-
plane section of the quadric Qt cCaQr’.

PROPOSITION 4.5. There is suchan index J that m. > 2.
Proof. Gereric divisor of linear system | 2M | is elliptic curve. The linear system
| 20— Z mx, | defines a birational isomorphism of the quadric Qt or CP?.

So divisors of this linear system are rational curves, because they are preimages
of lines in CP%.
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Therefore they are singular curves. By Bertini theorem there is a point X;
from the base locus of the linear system | 2H — Z mx, | such that all these divisors

have singularity at ;- This means that m, = 2. L
So
(16) L=|2H-2x, — ) mx|=|20-x)— ) mx,|
i»2 i»2

Note that the map, given by the linear system |H —x
projection p_: Q, — P? from the point x € Q,

Thus the line system | 2(H — x )| transforms Q ¢ to the Veronese surface
in PS5,

Therefore if T is such a family of quadrics that the map fvé’ 10, - PT}T "
is provided by the linear system ] 2(H - xl) | on QE’ then it is the family
of all quadrics, passing through the point x and tangent to a given plane, con-
taining x (see (15)).

Let T be a codegree 1 complex of quadrics in @P3 such that PvE is pro-
vided by

] | is the stereographic

L =| 2(H——xl)—x2 —X; —X, | .
Then P(T;",rl" N EE) =x, Ux, Ux, Ux, and p(EE) contain 3 Lagrangian

variety T;‘,i(l‘P3 (i=1,2,3).
So I' isa complex from example 3.4. _
The proof of theorem 3.11 is finished. n

§5. A «<GENERIC» CODEGREE 1 COMPLEX OF K-DIMENSIONAL SUB-
MANIFOLDS CAN BE REDUCED TO AN ADMISSIBLE COMPLEX OF,
CURVES

THEOREM 5.1. (The Main Theorem). Let {BE} be a family of subwanifolds in
B. Suppose that submanifolds of the family, which are tangent to r generic
hypersurfaces in B form a complex of codegree 1.

Then if r = 4, there is a contact transformation, which transfers the family
B, toan admissible family of curves. -

Remark 5.2. It is sufficient to assume in the formulation of theorem 5.1.
that submanifolds Bt are tangent to m generic subvarieties of dimension not
less than codim Bz - 1.



INTEGRAL GEOMETRY ON FAMILIES OF SURFACES IN THE SPACE 589

Remark 5.3. Complexes, described in the formulation of this theorem, depend
on r = 4 generic subvarieties in B. The others codegree 1 complexes in the tamily
B€ depend on only 3 generic subvariety. So a “typical” codegree 1 complex in

B ¢ is contactly equivalent to an admissible complex of curves.

2. The complete proof of these results will be published in [Gon3]. In this
section we indicate the main ingradients of the proof.

First of all, it is easy to prove that EE does not lie in a hyperplane in T:I‘.

Recall, that if X is a subvariety in @P", which does not lie in a hyperplane,
then

deg X =2 codim X + 1
If the assumption of the theorem 5.1 is holds, then we deduce that
deg PEt = codim st +1
Further we need the nice classical Enriques theorem ([E], see also [S.-D.])

which gives complete description of subvarieties of minimal possible degree in
PV . which does not lie in a hyperplane.

Let

E= @ o0d),
i=1

where d; > 0, is a vector bundle over P . We suppose that di > 0 for some
i. Denote by P(F) the manifold of all hyperplanes in fibres of the bundle E.
Then there is the canonical projection

‘m i P(E)- Pl

Let M be the line bundle over ﬁ(E), whose fibre over the point x EP'(E)
is the quotient of the one of E (over x) on the hyperplane, corresponding to x.
Then m M =E and there is the canonical embedding, defined by the line
bundle M:

0, : P(E) & BHO (B(E), M))

(py, ) is a hyperplane in HO (P(E), M), consisting of sections, which is zero
at x). Easy computation with Chern classes shows that

deg ), (P(E)) = codim ¢, (P(E)) + 1

Recall, that the image of P> in P° by a map, provided by the invertible
sheaf OP, (2) is called the Veronese surface. It also has the minimal possible
degree The same property has the bundle U (2) © O, on P,
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THEOREM 5.4.(Enriques) Let X be an irreducible variety in P which dces not lieina
hyperplane and has minimal possible degree deg X = codim X + 1. Then X
is one of the following:

1. BY

2. The quadric in PV

3. The Veronese surface in P> or a cone over it in P37 with “vertex”in (r — 1)-
plane.

4. The variety ¢, (X), defined above. ]

The following theorem .is based on  the main result of Bernstein-Gindikin
[BG1-2].

THEOREM 5.5. Let T be a family of curves covering an open domain in B
and dim TI''>dimB>3. Then T is admissible if and only if deg PZ =
codim PZJ€+ 1 + 1. In this case PE =y, (P(E)) for some M. -

Let us consider the variety z ¢ - T I', which is the dual variety to Z CT *.
Recall that T r=HP, E). There is the canonical map

(18) H'P' Ee 0 (-1)eH" (P',01))~ H'P' E)

LEMMA 5.6. E C H° (P!, E) can be naturally identified with the image of
the map (18). ]

dim HO(PI, O (1)) = 2, so there is a l-paremetric family of subspaces
of codimension r in T 5I‘. We will call it o-subspace.

THEOREM 5.7. Suppose that Z s a coisotropic homogeneous subvariety in
T*T and PE = «pM(P(E )) where r = 4. Then there is a manifold B and an admis-
sible family of curves on B, parametrised by T, such that X coincides with the
coisotropic subvariety in T*T', defined by this family. n

So, there is a desired birational homogeneous symplectomorphism -
¢ : T*B > T*B, such that the following diagram

P@z\f B
T*B « T*B
is commutative, w1'~1ere Pg and p 5 are the null-foliations for Z.

The manifold B constructed as follows. We prove that assumption in theorem
5.7 implies that for every a-subspace there is the unique submanifold ¥ C I’
such that the tangent space at every point y € ¥ is an «-subspace. We will
call such submanifolds in I' as a-submanifold. Then B parametrise a-submani-
foldin T.
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The existence of a-submanifolds in I' is the most complicated part of the
proof. It based on main results of [Gon4].

I think, that subvarieties of minimal possible degree in P" play a key role
in integral geometry. Let me formulate 2 results, illustrating this idea. (The
proofs will be punblished in [Gon 5]).

THEOREM 5.8. Let X be a subvariety in P", which does not lie in a hyperplane.
Then the set of hyperplane sections of X, which are tangent to codim X,
generic algebraic hypersurfaces in X is admissible if and only if deg X =
codim X + 1.

EXAMPLE 5.9. Admissible complexes of quadrics of type I, II, IV are birationally
isomorphic to the family of hyperplane sections of:

L g, (P(E)), where E =0 ®0(2)® 0(2)

II. 3-dimensional quadric in P

IV. The cone (in P) over the Veronese surface in P,

Namely, if we removed the tangencv conditions from the definitions of these
complexes, we obtain linear systems provided desired birational isomorphisms.
Finally, every admissible family of curves on an algebraic surface can be canoni-

cally realised by hyperplaine sections of a surface of minimal possible degree
in CP":

THEOREM 5.9. Let X?> C CP” beone of the following surfaces:
cP? (n = 2), the Veronese surface in CP or a scroll
0y (PE)) CAPFs kst 1 where E = O(k,) @ O(k,).

Then
a) The family of hyperplane sections of X 2, tangent to given algebraic curves
Ml, A ,Mk C X? of order I;, ..., [, (l1 +... .+ <n ~ 2) is admissible.

b) Every admissible family of curves on an algebraic surface is birationally
isomorphic to just one of these families. ]
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