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Abstract.A complex~Bt} of submanifoldsis calledadmissiblein thesenseofintegral
geometryif thereare such densities on B~,that the integral transformation

I:f(x)~ [ ftx)p~

hasa local inversionformula~
We prove that compactsmooth surfacesof an admissiblecomplexin F

3 has
degree~ 3 and obtain completeclassificationof admissiblecomplexesof qua-
drics. Severalgeneraltheoremsandconjecturesaboutadmissiblecomplexofk-dimen-
sionalsubmanifoldsarestated.

§ 1. INTRODUCTION

1. Basic definitions, n-parametricfamily of submanifoldsBE of n-dimensional
manifold B is called admissible,if the value of any function f on B at every
point x canberecoveredfrom integralsof f over submanifolds,passingthrough

an infinitesimalneighbourhoodof x.

The general conceptionof integral geometryhasbeenproposedby I.M. Gel-
fand in theendof 50s[Gel].
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Let us give rigorousdefinitions. A double fibration is a diagramof manifolds

A
(1) ~V ‘~

B F

such that x :A -+B xl’ is an embedding.For x EB and ~ El’ set

B1ir1oir~
1~ F~=7r

2c7r1
1x

A double fibration axiomatises notion of a family of submanifolds.To
define diagram (1) it issufficientto set the family of submanifolds B

1 in B,

parametrisedby F, or the family F in F (where x E B). The last one is

calleddual to the initial one.
Let us supposealso that manifolds B1 arenonsingular.
Choosesome densities on manifolds B1 and definethe operatorof in-

tegration

I:f(x)~ f f(x)~1

In other words I is an operatorfrom C~’(B) to C~(F) whoseSchwartz

kernel is ,.L(x, ~)- ~(A) - d~,where ~(A) is a s-function of the submanifold

A, db is a volume elementon B and iz(x, ~)is a function on B x F.
If thereis an inverseoperator J C~(F) —* C~(B) whose Schwartzkernel

has the form L - ~(A) . d’y where L is a differential operatoron B x F and
d’y is a volume elementon F, we say that the integraloperator I hasa local

inversionformula. It is clear,that in this casedim B ~ dim F.
From now on we will assumethat all manifoldsare complexalgebraic, while

we will integratesmooth functions.Thereasonis that the study of the integral

transform I in the complex case is much more simpler than in the real one.
For example, if dim B1 is odd, then there are no local inversion formulas.

Let us supposethat dim B = dim F. Thena double fibration in the category

of complex manifolds is called admissibleif thereare such (n, 0) — forms p1
that for theintegral transform

I:C~(B)~C~(F),I:f(x)~ ( f(x)p1~

I B1

there exists an inverse operator J with the Schwartz kernel of the form
L~L. .

51(A) . d’y d-y where L is a holomorphicdifferentialoperatoron B xF.

In this case densities - are called admissibledensities (for the double
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fibration (1)).

2. Necessarycondition for admissibility [Gon 2]. Let T~Xbe the conormal
bundleto a submanifold Y C X.

Considerthe following simplectisationof diagram(1):

T~(B x F) ~ T*(B x F)

T”B ~

where and p~,are the restrictions to T~(Bx F) of the projectionsfrom

T*(B x F) = T*B x T*F on factors.
In the casedim B = dim F all manifolds indiagram(2) areof equaldimensions.

We denoteby d(B) (respectivelyd(F)) the degreeof the map ~B

If dim B = dim F, then traditionally thefamily of submanifoldsB
1 is called

a complex.
Example. Let F be a complex of lines in ifF

3. Then classicsdefined its

degree as follows. Considerthe embeddingof the Grassmanianof lines in ifP3 as
a Plukker quadric Q

4 in ifF
5. Then F = Q

4 fl H, where H is a hypersurface
in ULP

5. By definition, degreeof F is equalto degreeof H.

It can be proved that d(B) coincides with this degree. So we

will say that d(B) is the degreeand d(F) is the codegreeof thedoublefibration
(1).
THEOREM 1.1. [Gon 1-2]. If dim B = dim F and the double fibration (.1) is

admissible,then d(F) = 1.
CONJECTURE A. Every complexof k-dimensionalplanes in (~F’1 of codegree

1 is admissible.

This conjectureis verified for linear complexesof k-dimensionalplanes EM]
& [Gonlj and for line complexes(it follows from resultsof I.M. Gelfandand

M.I. Graev[G Gr 1].
In [Gon 3] we will prove it for complexesof (n — 2)-planesin (EPa and2-

planesin if!’5.
V. Guillernin and S. Sternbergproved(see [GS1-2]) that if in theC~-cathegory

the map

p°r:T~(BxF)\0_*T*F\O

is injectiveimmersion, ir
1 : A —~B is properand I~is theoperatorof integration

over F~ (equippedwith a measure),then F a I isan elliptic pseudodifferential

operator.
But in the complex case thereare no such examplesif codim B1 > 1. (see

[Gon 2]).
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3. Admissible families of curves. The full description of adniissibledouble

fibrations in the casedim B
1 = I was obtainedin the end of 70-s ([GGiSh],

[GGr2], [BG1-2], [B], [Gi 1-2]). It wasdonein two steps.First of all, 1.M. Gel-
fand, S.G. Gindikin, Z. Ya. Shapiro and M.I. Graev had founded necessaryand

sufficient conditionsfor the admissibility of a double fibration in the case

dim B = dim F, dim B1 = 1. ([GGiSh], [GGr2]).
In particularly, they provedthat B1 is a rationalcurve (for admissiblefaniily

of curves).
The next step has been performed by J.N. Bernstein and S.G. Gindikin

([BG 1-2]. [B]. [Gi 1-2]).
Let us statea part of their results;thedescriptionof admissiblefamiliesof curves

in genericposition.
THEOREM 1.2. ([BG 1-2]). Let F’ be a completefamily ofcompactnonsinguiw-

rational curves on B (i.e. dim F’ = JI~(B1,NB, B)). Then the family of curves,

which are tangent to r1 fixed hypersurfacesandintersect r2 fixed subvarieties

of codimension2 in B, where r1 + r2 ~ dim F — dim B is admissibleand all

admissiblefamilies of curvesin genericposition can beobtainedby this way. •

Forexample,any admissiblecomplexof lines in if!’
3 consistsof lines,which are

eithertangentto an algebraicsurfaceor interset an algebraiccurve.
For admissiblecomplexesof lines theorem 1 .2 was proved by I.M. Gelfand

andMI. Graev[GGr 1]).
Other admissible complexesin F’ can be obtained from theseby a limit

procedure.It is remarkable,that thereis anexplicit constructionfor all admissible

complexesin F’. We will give it in s. 2 of §3. (Seetheorem3.9).

DEFINITION 1.3. The variety of critical valuesof the projection ir
1 : A —~ B

is calledthe critical varietyfor a fainily { B1} on B.

For example, the critical variety for admissiblecomplexesin genericposition

in F’ is the union of r hvnersurfacesand r subvarietiesof codimension2,

mentionedin the formulation of theorem1.2.

Theorem 1 .2 tells us, that in the case of curves admissible complexesarc

characterisedby the property, that they can be defined by tangency — intersec-

tion conditionswith the critical variety.
The situation in thecasedim B1 ~ 2 is niuch more complicated.For example,

a complex of k-planes,which are tangent to (k + 1) (n — k) — n hypersurfaces

in CF’
1 hascodegree

C~—((k+ 1)(n—k)—n)

which is greaterthan I if k ~ 1, n — 2. where ((k + 1) (n — k) is the dimension
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of theGrassmanianof k-planes).

4. Main results.As we see in the previoussection, there is the exhaustive
descriptionof admissiblefamilies of curves.

Unlike this, almost nothingwas known aboutmanydimensionalcase.For

example, the only known admissiblefamilies of surfacesin 3-dimensionswas
a)complexof all planesin R

3 of C3.

b) complexof spheres,tangentto a plane.
The first is the classicalRadon transformation,and the secondis the horo-

spherictransformationin the Lobatchevskyspace,becausehorospheresin upper-
halfplane realisation are exactly spheres,which are tangent to absolute (i.e.

the planez = 0) (see[GGV]).
In § § 3, 4 of this article we classifyall admissible complexes of surfaces

of the secondorder (i.e. quadrics)in cF3. First of all we give in~3someexam-
ples of suchcomplexesin CF3 andprovethat theyare admissible.Thenweprove

in § 4 that thereare no otherscomplexesof quadricsin CF3 of codegreee1. So
we proved that any complex of quadrics in CF3 of codegree1 is admissible.

Thisresult confirms our generalconjecture.

CONJECTURE B. If F is an admissiblefamily ofsubmanifoldsB
1 in B and

dim B <dim F. then everycomplexin F of codegree1 is admissible.

The definition of admissibility in the case dim B < dim F is basedon the

notion of universal local inversion formula, discoveredfor k-planes in CI” by
I.M. Gelfand,M.I. Graev and Z. Ya. Shapiro in their beautiful paper [GGSh1]
morethan20 yearsago.We will give it in §2.

What can we say about admissiblefamilies of surfacesin CF3? There is the

following rationality theoreln.

THEOREM L4. [Gon2] If B1 is a complex of submanifoldsin B of codegree

1, thenB1 is rational andthereis thecanonicalrational structureon PTB. U

Recall, that by Chow theoremany compactanalytic subvariety in if!” is

algebraic. So if { B1 is an admissiblecomplex of compactsmoothsurfacesin
if!’

3, then B
1 is a surfaceof degree ~ 3, becauseit is known,that thereare no

rational smooth surfacesin F
3 of degreegreaterthan 3 (see [GH] ch. IV).

We hope to classify admissiblecornpl~xesof cubic surfacesin if!’3 in the
subsequentpaper.

In most casesadmissiblecomplex of quadrics in if!’3 can be reducedto

an admissiblecomplex of curves on a 3-dimensionalmanifold in a following
manner:thereis a diagram
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A
V \

(4) A
1 A2

/ \ / N

B L F

where B if!’
3, B +- A

1 -÷ L1 is an admissiblecomplexof lines in if!’
3,

L ~- A
2 -+ F is an admissiblecomplex of curveson L and if!’

3 +- A -÷ F is
the admissiblecomplex of quadrics.So the integral transformation,connected
with it is the composition

C~°(ifF3)~ C~(L) C°~(F)

Thus the admissibility of this complex of quadricsfollows immediately from
admissibility of doublefibrationsin thelower partof the diagram(4).

In [Gon3] we will prove that reductionto curvesis not a lucky chance,but
a rule for admissiblecomplexin the casedim B

1 > 1. Seealso §5.

§2. UNIVERSAL LOCAL INVERSION FORMULA AND ADMISSIBILITY

IN THE CASEdimB<dim F

Supposethat dim B <dim F. Then dim B1 <dim F~- Let

: C°~(F) —* FZk (Fr) be a differential operatorof orderk = dim B1 suchthat
dx~(IJ)=0 forany fEç(B).

If ‘y is aK-dimensionalcycle in F, then

x~(If) = c(-y). f(x)
‘.7

where c(’y) doesnot dependon f. Indeed,the integral depends only on

the homology class of ‘y, so it defines a generalisedfunction on B which is

concentratedin the point x (because dim F~> dim ~y).The homogeneity

considerationsshows that it is proportionalto ~(x).
If for any point x thereare a cycle ‘y in F~ and an operator x,~such

that c(y) ~ 0, then we will say that the integral transform I admitsan uni-

versal local inversionformula. Variousinversion formulascanbe obtainedchoos-
ing appropriatecycles ~, homologicalto ‘y.

As usually, in the complex casewe supposethat the integral has a form

f x~A (If)
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DEFINITION 1.2. We supposethat dinu B < dim F. Then the double fibration

(I) is said to be admissible, if there are such measuresof type x1~1on B1

that the correspondingintegral transform I admitsan universal local inversion
formula.

Let h be a generic hyperplanein T1 F. We denoteby C, the homology
class of codimension2k in F~ representedby the cycle, consistingof all such
points ~EFX, that T~B1.Ch.

PROPOSITION 2.2. In the complex case c(’y) is equalto (c~ ‘y) where( ,>

istheintersectionform in H2k (Fr).

§3. ADMISSIBLE COMPLEXES OF QUADRICS IN THE THREE—DIMEN-
SIONAL SPACE: EXAMPLES

1. We start with examples

Example 3.1. Complex of quadrics, containing a fixed line 2 and tangent
to 3 subvarietiesM1, M2, M3 in ifP

3.

Example3.2. a). Complex, consistingof quadrics,which are tangent to a

fixed quadric Q along a plane conic and some morea subvarietyin if!’3.
Example3.2.b). Complex of quadrics,passing through a fixed plane conic

C and tangentto a subvarietyin ifP3 -

Complexfrom example3.2.b) is projectivelyequivalentto complexof spheres.
If we set the quadric Q to the absolute,thenquadricsin RI’3 from example

3.2.a) are spheresin the Kely-Kleine realisation of non-equilidian geometry:

(the distancebetweenany two points A, B in RI’3 is givenby the formula

(A,B)=—log(A,B,P
1, P2)

2i

where and P2 are pointsof intersectionof the line AB with the absolute

and(~ , - , ~)is the crossratio.
3 ) ) 2 ‘

Considerthe sphereS ={xo +x~+x2 +x~ = l}.
Then the stereographicprojection from the point (1, 0, 0, 0) transforms

spheresin the hyperplane x0 = — 1 to hyperplanesectionsof ~3, which are
also spheres. Further, the projection from the origin onto the hyperplane

= — I , which is 2 : 1 map, transform sphereson S
3 to spheresin Kely-

Klein realisationof non-euclideangeometrywith the quadricx~+ . . . + x~=

as the absolute.So the composition of this two transformationsprovidesthe
2 ; 1 covering,which transfersthe euclidianspheresto the non-euclidian.

Example3.3. Let R be a ruled (but not a developable!) surfacein ifP3.
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Considercomplex,consistingof quadrics,which are tangent to R alongrectili-

neargeneratricesof R andsome morea given subvariety M.

Note, that the tangentplanein if!’3 to a developablesurfacedoesnot change

alongarectilineargeneratrix.so quadriccannotbe tangentto developablesurface
along a line.

Tangent planes to ruled surface R along a rectilinear generatrix 2 gives

a I : 1 map from 2 ifP’ to a manifold of all planes, containing 2 (which
is also if!” ). So there is exactly 3-parametricfamily of quadric. which are

tangent to R along 2.

Example 3.4. Complex, consisting of quadrics.which are tangent to a given

plane H at a fixed point x andsonic more3 subvarietiesin ifP3.
If IT is the infinite plane in ifP3, then

= a~X~+ 2a
12x1x2+ a27x~+a1x1 + a2y2 +a0

is theequationof quadrics,which are tangentto ir at thepoint x = (0 0 : 0 1).

2. THEOREM 3.5.All complexesfrom examples3.1-3.3are admissible.

Proof First of all let us verify that any of thesecomplexesis a composition

of admissiblecomplexesof curves.i.e. it hasthe form (4).

Denoteby L~(respectivelyLQ~L~and LR ) the manifold of all lines,intersec-

ting the line 2 (respectivelytangent to the quadric Q, alonga plane conic passing
throughthe planeconic C or tangentto ruled surfaceR). ThenL1, LQ. L~and

LR areadmissiblecomplexesof lines (seetheorem 1 .2).

LEMMA 3.b. If we set L = L7 (respectivelyLQ. L~of LR), WC can represent
a complexfrom example3.1 (respectively3.2 or 3.3) in theform (4).

Proof If B~ is a nuadric containingthe line 2 (tangentto R along the line

or to Q along a conic) then all lines on B1, intersectingthis line, form a rational

curve on LQ (LR or LQ). We denoteit by B1. If B1 is a quadric, containing the

plane conic C, then all lines on it form a pairof rationalcurves on L~(we also

denoteit by B1).
Let us prove that in any casewe obtain thecompletefamily of rationalcurves

B1 on L. Indeed,every variation B1(t) of the curve B1 providesthevariation

B1(t) of the quadric B1. Then B1(t) is a quadric,becausethequadriccannot

be deformed. It follows from the definition of L that B1(t) contain the line

2 (respectivelyintersecttheconic C or tangent R along the line).

Now let us prove that complex of rational curves,correspondingto the com-

plex of quadrics from example 3.1 is admissible.(The proof of the samestate-

ment for complexesfrom examples3.2 and 3.3 is in conipleteanalogywith this

one). Let fi~ (1 = 1, 2, 3) be the surface in L. consistingof lines. tangent
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to M.. Then it is not hard to seethat a complexfrom example3.1 corresponds

to the complex of curves B1, which are tangentto surfacesj~, ~“2~ M3. There-

fore it is admissibleby theorem 1 .2.

Remark 3.7. The codegreeof the double fibration B — A ~. F in (4) is

the product of codegreesof double fibrations in the lower part of (4).

So if the codegreeof the double fibration B +- A -+ F is 1, then the sameis

right for lower double fibrations in (4). Therefore the double fibration
L ~— A2 -+ F is admissible (becauseB1 are curves) and if dim B = 3,
then the double tibration B ~— A —* L1 is alsoaamissible(by thesamereason).

LEMMA 3.8. If doublefibrations in the lower part of diagram(4) are admissible,
then their composition— the doublefibration B +- A -+ I’ — is alsoadmissible.

Proof We can choosesome admissibledensities on curves B1. Let ,~

be a point of L, Q(i~)-correspondingline in if!’
3 and i~i -admissibledensity

on the line Q(r~)(Recall, that the admissibility of thesedensitiesmeans, that
the correspondingintegral transformationhas a local invertion formula — see

s.l of~l).
We define the integral transformation I C~’(ifP3) -+ C~(F) as follows:

I:f(x)~f (J f(x)~)x
1

B1 Q(’i)

So, weobtain:

~ 1=1

where

I : f(x) ~.. ~(~):= I f(x) ~vi., ) 7~

I:~(~)~ )x1
JB1

Denoteby J and j inverseoperatorsfor I and I which are
local inverseformula for theseintegraltransformations.Then J = j a J

qi,1 XI
is the local inverseoperatorfor the integral transformation.1.
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Recall, that in the caseof example3.2 a quadric B1, passingthrough the

conic C, transfers to the union of two rational curves: B~’~and~ which
are parametrisedtwo families of lines on B1. Thuswe mustchoosesuchadmis-

sible densities on A~
1~that

f (f f(x) ~)x~1= f (f f(x) ~,.,)
~(1) ~ ~(2)

It remainsto remark that, as we seeabove,complexesof type 3.2 b) reduce
to complexesof type 3.2 a). Theorem3.5 is proved. • U

Note, that this reductionto curves on L
2 permits us to describe all

(not only in generic position admissiblecomplexes),consisting of quadrics,

passing through the line 2, becausethey transforms to admissible,complexes

of curves in L~ (and vice versa),which is completelyclassifiedby J.N. Bern-
stein-S.G.Gindikin. Let us statetheir result in generalform.

Namely,considerthe tower of monoidal transformations

a~~
1c~A:B~—*B~1—*...—*B°~B

where a1 : B -+ B’ - 1 is the monoidal transformationswith the centerat an

irreducible subvariety Y~_1 C...~B’ 1 - Let Z
1 , - . . , Zm are hypersurfacesin

~ and 2~,. . - 2,~,— someintegernumbers.Denoteby F (B;A; Z~.. . , Zm;

~ 2,,) the family of curvesfrom F’, which can be lifted on B’~, in-
tersectpreimageof Y0 Yq— i and tangentto Z1, . . . , Zm of order

- -

2m respectively.

Denoteby d.- 1 thecodimensionof ~_i in B.

It is easyto seethat the constructedabovefamily of curvesdependson

dimF— ~ (d—1)

parameters.We will supposethat thisnumberis greaterthandim B — 1.

THEOREM 3.9. [BG1-2]. Let F’ bea completefamily ofcompactnonsingular

rational curves on B. Then the family F(B; A; Z
1 Zm;2~,. . . , 2,,,)

is admissibleandall admissiblefamilies in F’ can be obtainedby this construe-
tion. U

For example, families in generic position can be describedin this language
as families of type F(B,A;Z1,.., Zm;21, . . - ,2 ),where A :B

1 -÷Bisthe
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monoidaltransformationwith the centerin a subvariety Y C B of codimension

2 with r1 irreduciblecomponents.

If we apply this theoremto the family of curves B1 on L~ and consider

correspondingcomplexesof quadricsin Q~P
3 we obtained the complete list

of admissiblecomplexesof quadrics,which cnntainthe given line 2.
Exercise3.10. Try to imagine,how it looks in ifP3 complexof quadrics.cor-

respondingto the complexof curves B
1 on L, definedby the following tower

of monoidaltransformations:

B
3 -~B2~B1 ~*BO~L

2

where a1 is the blow up with the centerat a curve C L and ~2(as) is
the blow up with the center at a curve V2 C (01 ~ 1 ~Y1), (respectively
V3 C(a~)

1(Y
2)).

Thesecomplexesmay be viewed as limits of complexesfrom example3.1.
We will call such complexesas complexesof type I; complexesfrom examples

3.2 a), b) where quadric Q and conic C may be singular,we will call as com-
plexes of type II; complexesfrom example3.3 as complexesof type III; and
complexesfrom example3.4and their limits ascomplexesof type IV.

THEOREM 3.11. Every codegree 1 complexof quadrics in if!’
3 is complex

oftypeI, II, IJI orIV.
Wewill provethis theoremin §4.

Complexesof type IV cannotbe representedin form (4). This fact and the
admissibility of complexesof type IV will be provedin [Gon3]. Explicit inver-
sion formulasfor complexesof type I, II, Ill canbe foundin [GonS].

3. Contact transformation

In thissectionwe definethe action of a contacttransformationon subvariety.
This definition goes back to SophusLie-see[Lie 1], [Lie 21. We prove that

every admissiblecomplex of quadrics0! type I - II is contactlyequivc.lentto an
admissiblecomplex of curvesby a canonicalway. I hope alsothat resultsof this

sectionclarify the geometryof admissiblefamiliesof quadricsin if!’3.

We will not differ contacttransformationsfrom homogeneous symplectic
ones.

It is veryimportantto keepin mind the followmgwell-known lemma.

LEMMA 3.12. Every closed, irreducible, algebraic homogeneousLagrangian

subvarietyin T*X hastheform T~X, where Y isa submanifoldin X.

Supposethat the homogeneoussymplectic transformation p: T*B
1 -÷ T*B2
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be a birational isomorphisni. Then according to this lemma p(T B1) can
be representedin the form T~B,. We will say that the family of st~bvarieties

{B1} in B2 is obtainedfrom the family {B~~in~B1 by the actionof thehomo-

geneoussymplectic (or, after projectivisation, contact) transformation p. In
this casewe will write a1 = ~p(B1).

Example 3.13. (Projective duality). Let B1 = P”, B2 = P” be the manifold

of hyperplanesin I” and C CP~x P’ is the incidencemanifold.Thenwe have

following diagrams

C T~(P”xF”)
Py

F” I” T*P~~ T*P~~

Set p = (— p,) o pj- ~. If B1 is ak-dimensionalplanein F”, then ~(B1) is

the projectivelydual (n — k .— 1)-dimensionalplanein P”.
This construction can be generalisedas follows. Let C be subinanifold in

B1 x B2 and dim B1 = dim B2.
Considera doublefibration andits symplectisation

C. T~(B1xB2)
(5) / \ \P2

B1 B2 T*B1 T*B2

Then

(6) ~c=(_P2)op:T*Bi~T*B2

is a (multivalued) rational homogeneousLagrangiantransformation.Theconverse

is alsovalid:

PROPOSITION 3.14. Let p: T*B1 -+ T*B2 be a homogeneous Lagrangian

transformation. Then there is a submanifold C C B1 x B, such that ~ has
theform (6).

Proof Considerthe graph { x, — ~(x)} of the map — p. It is a homogeneous
Lagrangiansubvariety in T*B1 x T*B2. So by lemma 3.12 it is the conormal

bundle to a submanifold CC B1 x B2. U

The following lemma permits us to find geometricallythe imageof a hyper-

surfaceund&r theactionof a contacttransformation

LEMMA 3.15.-’L’et MbeahypersurfaceinB1 and B2(x)=~yEB2j(x,y)EC}.
Themvpc~M)is th/envelopeofthefamily ~B2~x)} where x EM.

Example3~1.6.The contacttransformation,whichcorrespondsto the complex
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of spheresin R3, tangentto theplane z = 0, transfersthe family of spheres
in R3 to the family of paraboloides

(7) z=X((x—a)2 +(y—b)2+c)

(To provethis, apply lemma 3.1 5). U

This family of paraboloids can be defined as the family of all quadrics,

passing inrough two (imagine) intersectinglines at infinity. (Note, that this is

2 mapping). So it is the admissiblefamily of quadricsof type II with dege-

nerateconic C.
Example3.17. Let

C
(8) / L\

L

be the double fibration, correspondingto an admissiblecomplex L of lines

in if!’3. Considerits symplectisation

T~(if!’3 x L)L

T*ifP3 T*L

amid correspondinghomogeneoussymplectic (rational) transformation

: = ( p) p 1

If (8) is a complexof lines, which:

I) intersectthe line 2
11) or aretangentto a quadricQ
III) are tangentto the ruled surfaceR

then ‘~L transfersa quadric B
1, which respectively:

I) passesthroughthe line 2
II) passesthroughthe planecollie C
or is iangentto quadricQ alonga planeconic

III) is tangentto theruled surfaceR alonga line
to a rationalcurve B1 on L.

The constructedcontacttransformationin thecaseIlbis thefamousline-spheric
correspondenceof SophusLie-see[Lie I]. [Lie 2]. Let us describeit in a more
invariantmanner.

Let be a 3-dimensionalquadric. Then the family of all lines on can
be parametrisedby ifP

3.
The dual family F } (to the family of lines on Q

3) is the linear complex

of lines in if!’
3. It can be describedas follows. Let us represent if!’3 as a

projectivisationof the four-dimensionallinear space V equippedwith a symplec-
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tic structure: ifP3 = P(V). Then there are 3-parametricfamily of Lagrangian
planesin V, which can be parametrisedby thequadric Q

3. If weprojectivise

theseplanes,we obtain a linear complexof lines in P(V).

So weobtainedthe doublefibration

A
(9) / N P

3(V)

It is clear from proposition 3.9, that it has the degree2 and the codegree1.

The group SO(S) acts naturally on the left side of (9) and the group

SP(4)/{— 1 } on the right side. So SO(S) Sp(4)/ —{l } is the symmetrygroup

of thedoublefibration (9).
The projection of ‘—~~ifP~ with the centerat x E transforms com-

plex of lines on Q
3 to complex of lines in if!’

3, intersectingthe planeconic
C, which is the imageof the coneof limles on Q

3, passingthrough x.

Let T*Q3 —~ T*P
3(V) be thehomogeneoussymplectictransformation,

connectedwith the doublefibration (9). Let S be a spherein Q
3 (i.e. hyper-

planesectionof Q3). Denoteby Q~(S)and 23(5) curvesin P
3(V), which

parametrisedtwo families of lines in S.

LEMMA 3.17. (Dueto SophusLie [Lie 1] [Lie 2]) ~ and 2
2(S) are lines

in P
3(V) such that correspondingplanes in V are orthogonal with respect

to symplecticstructureon V. U

This lemma explained the name “line-spheric” for the transformation
The linear complex of lines in P3 (V) permits us to define an involutive

transformation of subvarieties in P3 (V). Namely, consider the diagram

~, T~’(Q
3xP

3(V)) ,~
/ N

T*Q
3 T*P

3(V)

Recall, that degp
1 = 2; degp2 = I. Let us identify genericpartsof

T~(Q3 x P
3(V)) and T*P3(V) by the map p

2. Then the involution on the

total space T~(Q3 x P
3 (V)) of the 2 : I coveringp

1 inducesthe transforma-

tion

~‘: T*P
3(V) -~ T*P3 (V); ,1i2 = id

For example,if x E p3 (1’) and h~ is the plane in P3(V) consistingof all
lines of the linear complex. passingthroughx, then ~j(T*P3(V))= T~P3(V)).
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Note that the 3-dimensionalsubspacein V, which correspondsto h~,is ortho-

gonal,with respect to symplectic structurein V. to the line, corresponding
to x.

Ihe next example:

~P(T~(S)
1~(1’~= TZ (S)P(V)

If X is a generic surfacein P3(V), then we candefine the surface m,Ii(x):

~,Li(TP3(V))= T(X)P3(V)

It follows from lemma3.15, that i~i(X) is the envelopeof the (2-parametric)
family of planesh~C p3(v), where x E h.

Finally, let me recall that horocyclesfor SL
2 (~1~are the subsetsg1 N. g2,

where g1,g2 ESL2(if).

If we identified SL2(if) with a quadric ad — bc = 1, then it canbe viewed
asan openpart of Q3, and the complexof horocyclestransfersto the complex

of lineson Q3.
The explicit local inversion formula for complex of horocycles for SL2 (if)

was obtainedby I.M. Gelfand and M.A. Naimark in 1947. It plays the crucial
role in the problem of finding the explicit Plancherelformula for SL2(if) (see
[GGV]).

§4. PROOF OF THEOREM 3.11

1. Let r be a family of submanifolds B1 in B. Thena vector 1) ET1F

definesthe section ‘y(X) of the normal bundle to TB in T*B. Denote
by a the canonicalI-form on T*B. Thenformula

X’-~-—a(‘y(X))

definesthe map

v1: TB -~T~F

Denoteby T~*.~Xthe fiber of the bundle T~Xat the point y.

LEMMA 4.1. Let us supposethat A -÷ F is a submersion.Then we have
theisomorphism

(10) ~B TGA(BxF)-.+TXB1B a=(x, ~)

Proof If a=~x, ~), then TaA CTB~T1r. Themappingdalr2 :T~A-~T1F

is epimorphism,so Ker da ~2 — T~B1 ~ 0. U

Sothereis the following diagram
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T*(B x F)
(11) P~, A

UT*B ____ T*F
~ B

1

LEMMA 4.2.Diagram(11) is commutative.
Proof It sufficient to check, that if 1~.E T*B B, then covector (X, v1(X))

is vanisheson any vector (v1, v) E TaA i.e. (v1~X),v2) = — (X, v1). But this

is the definitionof v~,becausea = pdq. U

COROLLARY 4.3. Supposethat dimn B = dini F. Then the codegreeof the

double fibration (1) is equal to the degree of the pro/ectivisation of the map

PlTBB’~0-+TlF’\0 U

Let us denoteby ~ thesubvarietyp~(T~(B x F)) C T

LEMMA 4.4. [GS1-2] a) ~ is coisotropic.

b) Supposethat the map pt., is inclusion in the generic point, so we can

identify genericparts of p~(T~’(Bx F)) and ~. Then ~B coincideswith time
null-foliation on the coisotropicmanifold ~.

2. Let F’ be the family of all quadrics Q1 in ifP
3. Then

(13)

Projectivising(13), we obtain the embeddingof in if!’8 provided by
the invertible sheaf O(2)/Q

1 (i.e. Pv’~’ 0(1) = O(2)/Q1). So Pp~(Q1) is the

submanifoldof degree8 in PT~” F
Let F be a complex of quadricsin ifP

3. Then thereis the following com-

mutativediagram

T*F’
T* ~3V~ ~ q’ I :TF’~-+TF’

1 1 1
I

Let usprojectivisethis diagram:

p,, PT~”F
(14) Q ~

1 i~PT~’F

So Pp
1 is a birational isomorphismof the quadric Q1 = P

1 x P’ on P2,
provided by a linear subsystem L of the complete linear system 0(2, 2) on
Q

1. Let us classifysuchlinearsystems.

I. Supposethat the fixed set of L containa divisor ~ . There are 3 possi-

bilities:
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a) ~ is a line.
b) ~ is a conic, or 2 intersectinglines.
c) ~ is a pair of non-intersectinglines.

Let us denoteby ~ 1 a divisor on Q1 which correspondsto ~ after iden-

tification P~1and Q1 by themapPv~(see(II)).
By lemma 4.4 thereis the null-foliation p : -+ T*ifP

3. Thenp(~fl T~F’)
is an isotropic subvariety in T” if.!’3 ,because~ fl T~F’ is an isotropic subva-
riety in T*F’.

Denoteby it the projectionof T*ifP3 on if!’3. Then

Cr: = ir(E fl T~F’)

is a subvarietyof positivecodimensionin if!’3.
It follows from resultsof section 1, that Cr coincideswith the critical variety

for the family F.
Note that

(15) p(~
1)Cp(~1)and p(~t)CPT~rifP

3

Supposethat ~ I is a line. Then Cr containeithera line 2, or aone-para-

metric family of lines, ~e. ruled surface R. In the first caseF is a complex
in the family F

1 of all quadrics,passingthroughthe line 2. In the second F

is a complex in the family FR of all quadrics,which are tangentto R along
a line.

In the case b) Cr contain either a planeconic or a surface M suchthat
quadricsfrom the complex F are tangentto M along a planeconic. In the

first case F is a complexof quadrics,passingthroughthe planeconic.
Note that quadrics, which are tangent to M along a given conic depends

on omie parameter.So thereis a two-parametricfamily of conics on M. There-

fore Al is a quadric.
In the case C) L is a linear (sub)systemof 0(0, 2), so it definesthe map

of degreezero,and this casedoesnot occur.

II. Now let us considerthe case,when the fixed set of the linear system L

is a zero-cycle,i.e. L = 2H — ~ m,x7 where H is thedivisor classof a hyper-
planesectionof the quadric Q1 C ifP ~.

PROPOSITION4.5. Thereissuchanindex/ that m. ~ 2.

Proof Gerericdivisor of linear system 2i11 is elliptic curve.Thelinearsystem

2H-— ~ m,.x1 defines a birational isomorphismn of the quadricQ1 or~if.!’
2.

So divisors of this linear systemare rational curves,becausethey are preimages

of linesin if!’2
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Therefore they are singular curves. By Bertim theorem there is a point x.
from the baselocus of the linearsystem 2H — ~mpc1 I suchthat all thesedivisors
havesingularityat x1. Thismeansthat in1 ~ 2. U

So

(16) L=~2H—2x,— E m~x1I=I2(JJ_x1)_~
i~2 i~2

Note that the map,givenby the linear system H — x1 is the stereographic

projectionp~: -+ P
2 from the point x E

Thus the line system 2(H — x
1) transforms to the Veronesesurface

in P
5.

Thereforeif F” is sucha family of quadricsthat the map .~p~’:Q
1 -÷ PT~F”

is provided by the linear system 2(H — x1) on Q1, then it is the family
of all quadrics,passingthroughthe point x and tangentto a given plane,con-

taining x (see(15)).
Let F be a codegreeI complex of quadricsin if!’

3 suchthat Pp
1 is pro-

vided by

L=J2(H—x1)—x., —x3 —x41.

Then P(T’rF’ ~ ~) =x~Ux2 U x3 Ux4 and p(~1)contain3 Lagrangian

variety TJ~if!’
3 (i= 1,2,3).

So F is a complexfrom example3.4.
Theproofof theorem3.11 is finished.

§ 5. A (<GENERIC~CODEGREE 1 COMPLEX OF K-DIMENSIONAL SUB-
MANIFOLDS CAN BE REDUCED TO AN ADMISSIBLE COMPLEX OF,
CURVES

THEOREM 5.1. (The Main Theorem).Let {B
1 } bea family of submanifoldsin

B. Supposethat submanifoldsof the family, which are tangent to r generic

hypersurfacesin B forma complexofcodegree1.

Then if r ~ 4, there is a contact transformation,which transfers the family
B1 to an admissiblefamily ofcurves. U

Remark 5.2. It is sufficient to assumein the formulation of theorem5.1.
that submanifolds B1 are tangentto m genericsubvarietiesof dimensionnot

less thancodim B1 — 1.
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Remark 5.3. Complexes,describedin the formulation of this theorem, depend

on r ~‘ 4 genericsubvarietiesin B. The otherscodegree1 complexesin the family

B1 depend on only 3 genericsubvariety.So a “typical” codegree1 complexin
B1 is contactlyequivalentto anadmissiblecomplexof curves.

2. The completeproof of theseresults will be publishedin [Gon3]. In this

sectionweindicatethe main ingradientsof the proof.
First of all, it is easyto prove that doesnot lie in a hyperplanein T’I’.
Recall, that if X is a subvarietyin (EP”, which doesnot lie in ahyperplane,

then

degX~’codimX+1

If theassumptionof the theorem5.1 is holds, thenwe deducethat

degPE1=codimP~1+ 1

Further we need the nice classicalEnriquestheorem([E], seealso [S.-D.])

which gives completedescriptionof subvarietiesof minimal possibledegreein
Pr”, which doesnot lie in a hyperplane.

Let

E= ® 0(d1),

where d. ~ 0, is a vector bundle over P’. We supposethat d1 > 0 for some
, Denote by i~(E) the manifold of all hyperplanesin fibres of the bundle E.
Thenthereis the canonicalprojection

it :P(E)-+P’

Let M be the line bundleover P(E), whosefibre overthe point x EF(E)
is the quotientof the oneof E (over x) on the hyperplane,correspondingto x.
Then lr,m, M = E and there is the canonicalembedding,defined by the line
bundleM:

P(E) ‘—÷F(H°(P(E),M))

(~M(x) is a hyperplanein H°(IkE), M), consistingof sections,which is zero
atx). Easycomputationwith Chernclassesshowsthat

deg ~M (P(E)) = codim ~ME~ + 1

Recall, that the imageof P
2 in .P~’ by a map,provided by the invertible

sheaf O~,(2) is called the Veronesesurface. It also hasthe minimal possible

degreeThe samepropertyhasthe bundle0~(2) ~ 0~onP2.
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THEOREM 5.4. (Enriques)LetX bean irreduciblevarietyinPV whichdcesnotlie ina

hyperplaneand has minimal possibledegree deg X = codim X + 1. ThenX
is oneof the following:

l.PAr

2. The quadric in pN

3. The Veronesesurfacein P5 or a coneoverit inP5 + r with “vertex” in (r — 1)-

plane.
4. Thevariety ~M (X), definedabove. U

The following theorem is basedon the main result of Bernstein-Gindikin

[BG1-2].

THEOREM 5.5. Let F’ be a family of curves coveringan open domain in B
and dim F’ > dim B ~‘ 3. Then F’ is admissible if and only if deg P~

1=

codim ~~1+ + I. In this case ~M(P(E))for someM. U

Let us considerthe variety ~I C T1F, which is thedualvariety to X1 CT~”F.

Recall that T1F H°(P
1,E). Thereis the canonicalmap

(18) H°(P’,E~ 0 (— l)nH° (P1,0(l))-+ H°(P1,E)

LEMMA 5.6. C 110 (F1, E) can be naturally identified with the imageof

the map (J8). .
dim H°(P1, 0 (1)) = 2, so there is a l-paremetricfamily of subspaces

of codimension r in T
1F. Wewill call it a-subspace.

THEOREM 5.7. Supposethat ~ is a coisotropic homogeneoussubvarietyin

T*F and FE1 = ~M(F(E)) wherer ~ 4. Then thereis a manijoldBandan admis-
sible family of curves on B, parametrisedby F, such that E coincideswith the

coisotropicsubvarietyin T*F, definedby this family. U

So, thereis a desiredbirationalhomogeneoussymplectomorphism

p: T*B -÷ T*.~,suchthat the following diagram

PB~,\PB

T*B T*B

is commutative,where and p~.are thenull-foliations for E.

The manifold B constructedasfollows. We prove that assumptionin theorem

5.7 implies that for every a-subspacethere is the uniquesubmanifold Y C F
such that the tangentspace at every point y E Y is an a-subspace.We will

call suchsubmanifoldsin F as a-submanifold.Then ~ parametrisecw-submani-

fold in F.
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The existenceof a-submanifoldsin F is the most complicatedpart of the

proof. It basedon main resultsof [Gon4].
I think, that subvarietiesof minimal possibledegreein F” play a key role

in integral geometry. Let me formulate 2 results, illustrating this idea. (The

proofswill be punblishedin [Gon 5]).

THEOREM 5.8. Let X be a subvarietyin F”, which doesnot lie in a hyperplane.

Then the set of hyperplanesectionsof X, which are tangentto codim X.
generic algebraic hypersurfacesin X is admissible if and only if deg X =

codimX+ 1.

EXAMPLE 5.9. Admissiblecomplexesof quadricsof typeI, II, IV are birationally

isomorphicto the family of hyperplanesectionsof:

~ ~‘M (P(E)), where E = 0 ~ 0(2)~ 0(2)
II. 3-dimensionalquadricin P4
IV. The cone(in F6) over the Veronesesurfacein P5.

Namely, if we removedthe tangencyconditionsfrom the definitionsof these

complexes,we obtain linear systems,provideddesiredbirational i.somorph.isms.
Finally, everyadmissiblefamily of curveson analgebraic surfacecanbecanoni-

cally realised by hyperplainesectionsof a surfaceof minimal possibledegree
in ifP”:

THEOREM 5.9. LetX2 C ifP” beoneof the following surfaces:
if!’2 (n = 2), theVeronesesurfacein CE!’5 or a scroll

C (LPk, +k
2 + 1, whereE= 0(k1) 0(k2).

Then
a) The family of hyperplanesectionsof X

2, tangentto given algebraiccurves

M
1 Mk C X

2 of orderl~ 1k’ (l~+ . + ~ n — 2) is admissible.
b) Every admissiblefamily of curves on an algebraicsurfaceis birationally

isomorphic to just oneof thesefamilies. •
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